
Arigi Handbook

Kastelo Inc.

1.1

25/11 2020

2

CONTENTS

1 Introduction 5
1.1 Functionality . 5
1.2 Principle of Operation . 5
1.3 Getting Help . 6

2 Installation 7
2.1 Requirements . 7
2.2 Procedure . 7
2.3 Authentication & HTTPS . 9
2.4 Docker Image . 10
2.5 Configuring SMTP . 10
2.6 LDAP Authentication . 10

3 Dashboard 15
3.1 Overview . 15
3.2 Summary Indicators . 16
3.3 Devices Table . 16

4 Devices 17
4.1 Overview . 17
4.2 Automatic Enrollment . 18
4.3 Reverse Tunneling the API . 18

5 Configuration Templating 21
5.1 Overview . 21
5.2 Updating by JSON . 22
5.3 Updating by Python (Starlark) . 24

6 The CLI 29

7 Upgrading 31
7.1 Between Patch Versions . 31
7.2 From 1.0 to 1.1 . 31

3

Arigi Handbook, Release 1.1

4 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Functionality

Syncthing is an inherently distributed solution lacking a built in form of centralized man-
agement. Arigi provides the following centralized functionality on top of Syncthing:

• A dashboard overview of all configured devices and their folders, with indications of
online/offline state, in sync/out of date status, and configuration sync status.

• Device name, tag, and folder label filtering and searching for the status dashboard.

• Device configuration management based on tags and templated configuration frag-
ments. Devices are automatically configured based on configuration fragments match-
ing device tags.

• An extensive JSON REST API for integrating Arigi with third party systems or dash-
boards.

• Aggregation and forwarding of events to external sources like ElasticSearch for further
processing and dashboarding.

1.2 Principle of Operation

Arigi simplifies deployment and management of multiple Syncthing devices. Instead of
configuring devices one by one, Arigi gives you a single place in which to monitor all devices
and apply configuration changes. Device configurations are based on templating and tag
matching - you can easily add a new folder to a group of devices, and Arigi will ensure the
devices are appropriately reconfigured.

Arigi is a server component that provides a web based interface. It does not require an
external web server, although it can be placed behind one for aggregation and authentication
purposes.

All communication between Arigi and the managed Syncthing devices’ API is initiated from
Arigi and carried securely over HTTPS. Syncthing devices are located using standard Sync-
thing discovery mechanisms or manually configured addresses. For devices behind fire-
walls or otherwise unreachable via direct connection from Arigi, a tunnel server / reverse
HTTPS proxy can be used. This tunnel server connects outward towards Arigi and then al-
lows Arigi to initiate connections towards a given Syncthing device through the tunnel (see
Reverse Tunneling the API).

5

Arigi Handbook, Release 1.1

Syncthing devices are enrolled with Arigi, using either of the following methods:

• By entering the GUI address (IP and port) plus a valid user ID and password. Arigi
will read the API key from the device configuration and use that for further commu-
nication.

• By entering the GUI address (IP and port) plus a valid API key.

• By having Arigi act as a private Syncthing Discovery Server and automatically enroll
devices registering with the discovery server (see Automatic Enrollment).

Once enrolled, a Syncthing device is monitored and controlled by Arigi.

1.3 Getting Help

The latest version of Arigi and the product documentation can be downloaded from https:
//kastelo.net/arigi/.

When logged into an Arigi instance, the About page also provides access to the matching
version of the product documentation, the list of known issues, and contact information to
support. Should you be unable to access the GUI, please use the following information to
contact support at any time:

• Direct email to support@kastelo.net.

• Web portal at https://support.kastelo.net/

6 Chapter 1. Introduction

https://kastelo.net/arigi/
https://kastelo.net/arigi/
mailto:support@kastelo.net
https://support.kastelo.net/

CHAPTER

TWO

INSTALLATION

2.1 Requirements

Please ensure the following requirements prior to commencing installation.

• A Unixy server. Arigi runs fine on Debian, Ubuntu, CentOS and RedHat Enterprise
Linux. It probably runs fine on most other flavors of Linux too. FreeBSD, macOS
(“Darwin”) and Solaris are also good choices. The server should have Internet access.
The exact resource requirements are dependent on the number of devices and their
configuration; however, a baseline of 1 GiB of RAM and one CPU core is sufficient in
most cases. A virtual machine is fine.

• One or more Syncthing devices to manage. Syncthing version 0.14 and above are
supported.

2.2 Procedure

Arigi is distributed as a generic .tar.gz file containing the arigisrv binary and supporting
scripts and documentation.

2.2.1 Configuration

While all day to day configuration (managed devices, etc.) is done through the Arigi GUI,
some server wide settings must be provided at started.

All options can be set as flags or environment variables. The environment variable cor-
responding to each flag is named in upper case, with underscores and the ARIGI_ pre-
fix. For example, the option --listen-address can be set by the environment variable
ARIGI_LISTEN_ADDRESS. For boolean flags, use the environment values true or false.

The following general options are available:

--check-interval Interval between device status checks. Accepts a number
with a unit prefix (h, m, or s) (default: 5m)

--concurrency Maximum number of parallell HTTPS requests that may be
outstanding at any given moment (default: 100)

--disable-configurator Do not push configuration to devices

7

Arigi Handbook, Release 1.1

--disable-v4-disco Do not use standard global discovery servers over IPv4

--disable-v6-disco Do not use standard global discovery servers over IPv6

--custom-disco=URL Use custom discovery server (can be given multiple
times)

--server--external-url The external, visible URL to Arigi (default https://
localhost:2525)

--home Directory for persistent data (default /opt/var/arigi)

--listen-address Address to listen on (default :2525)

--listen-insecure Disable HTTPS (see Authentication & HTTPS)

--listen-min-tls-version 1.0, 1.1, or 1.2 (default 1.2)

SMTP options (see Configuring SMTP):

--smtp-server SMTP server address

--smtp-user SMTP auth user

--smtp-password SMTP auth password

--smtp-from SMTP from address

ElasticSearch options:

--elastic-url ElasticSearch URL

Automatic enrollment options (see Automatic Enrollment):

--enrollment-address Address to listen on for enrollment server

--enrollment-api-key Enrollment server default API key

--enrollment-api-port Enrollment server default API port (default 8384)

--enrollment-tag Enrollment server tags for new devices (option can be re-
peated)

LDAP authentication options (see LDAP Authentication):

--ldap-server Address to an LDAP server, host:port (option can be re-
peated)

--ldap-bind-user Bind userID or DN

--ldap-bind-password Bind password

--ldap-search-base Search base DN

--ldap-search-pattern Search pattern, %s placeholder (default
(|(sAMAccountName=%s)(mail=%s)))

--ldap-use-ldaps Use LDAPS for the connection

--ldap-use-starttls Use StartTLS for the connection

Backup and restore:

--backup-to Create backup of the database

8 Chapter 2. Installation

Arigi Handbook, Release 1.1

--restore-from Restore backup of the database

2.2.2 Installing

Untar the distribution into a suitable directory. Our recommended default is /opt, resulting
in the default Arigi installation directory /opt/arigi.

mkdir -p /opt # cd /opt
tar zxvf ~/arigi-linux-amd64-v1.0.tar.gz

You also need a directory for persistent data. The recommended location is the default,
/opt/var/arigi. Make sure this directory is owned by the non-root user that will be running
Arigi.

mkdir -p /opt/var/arigi
chown arigi:arigi /opt/var/arigi

Any other existing, local user can be used instead of arigi:arigi. Edit the default variables
in /opt/arigi/bin/start.sh to set the directory paths in use and the database parameters. To
run Arigi you use the start.sh script. It is highly recommended to run Arigi as a separate,
non-root user.

su - arigi
$ /opt/arigi/bin/start.sh

In summary, you should now have the following files and directories in place:

• /opt/etc/arigi/: Directory for read-only configuration.

• /opt/arigi/: Directory for the distribution.

• /opt/arigi/bin/: Directory for executable files.

• /opt/arigi/bin/arigi: A CLI interface to Arigi.

• /opt/arigi/bin/arigisrv: The main Arigi binary.

• /opt/arigi/bin/start.sh: The startup helper script.

• /opt/var/arigi/: Directory for read-write data.

2.2.3 Running

Use your favorite operating system method to keep Arigi running. Possibilities include
systemd, runit, daemon-tools, and cron. The arigi binary, and hence the start.sh script,
will not exit unless Arigi encounters a fatal error.

2.3 Authentication & HTTPS

Arigi by default uses HTTPS and creates a certificate pair on startup if one is missing. It is
recommended that this certificate either be replaced with a CA issued certificate, or added

2.3. Authentication & HTTPS 9

Arigi Handbook, Release 1.1

to the local trust store.

It is also possible to run Arigi in HTTP only mode behind a secure reverse proxy, such as
Nginx, Apache or Caddy.

Please note that the arigi command line tool requires that a trusted certificate is used,
whether CA issued or by local trust policy. As an alternative, plain HTTP can be used with
the --listen-insecure flag to arigisrv and the --api-insecure flag to arigi.

Note: The default credentials on initial login are user ID admin and password arigi.

2.4 Docker Image

For quick deployment and testing there is a Docker image available.

docker run -d --name arigi --restart=always \
-p 2525:2525 kastelo/arigi

Give the container a few seconds to start, and then visit http://localhost:2525/ (or the ad-
dress of the host running the container if not localhost). Data in the container is stored in
/opt/var/arigi. You can bind a volume in order to get persistent storage independent of the
container.

Arigi will generate and use a self signed key pair if one is not already present on the volume.

2.5 Configuring SMTP

TBD

2.6 LDAP Authentication

Arigi can be configured to delegate authentication to an external LDAP source. Typical ex-
amples include Microsoft Active Directory and OpenLDAP / OpenDirectory servers. When
LDAP authentication is configured the user cannot change their password, email or display
name through Arigi. Instead these changes should be done in the LDAP / Active Directory
system directly.

To enable LDAP authentication, the following must be set:

• --ldap-server: Set to the address of the LDAP server, with hostname and port. For
example, dc1.example.com:389 for standard LDAP, or dc1.example.com:636
for LDAPS. This option can be repeated to enable multiple servers for failover.

• --ldap-bind-user and --ldap-bind-password: Set to the user and password
for performing directory searches. The user name should be in the format accepted by
the LDAP server, typically as a full DN (OpenLDAP) or user@domain (AD).

10 Chapter 2. Installation

http://localhost:2525/
mailto:user@domain

Arigi Handbook, Release 1.1

• --ldap-search-base: Set to the base DN under which users are found in the di-
rectory. Typically, for an AD domain “example.com”, something like CN=Users,
DC=example,DC=com.

To use TLS for connection security, set either --ldap-use-ldaps (server port should be
636) or --ldap-use-starttls (server port should be 389). In either case the server needs
a correct, valid certificate matching the given server hostname.

The --ldap-search-pattern option is an LDAP search filter to match on the user ID
entered by the user in the login form. The default is suitable for AD and matches on either
account name or email address.

2.6.1 Active Directory Example Configuration

Consider the following typical AD setup:

We have a domain called ad.kastelo.net and a user called “Arigi Bind” that we will use
for searches. In the user account details we can see the logon name that we will use:

2.6. LDAP Authentication 11

Arigi Handbook, Release 1.1

In this setup we will use the following options:

--ldap-server dc1.kastelo.net:389
--ldap-bind-user arigi@ad.kastelo.net
--ldap-bind-password ...
--ldap-search-base CN=Users,DC=ad,DC=kastelo,DC=net

The other options are acceptable at their defaults. Users will be able to use their logon name
(sAMAccountName) or email to log in.

2.6.2 Enforcing Group Memberhip

In some cases it may be desirable to restrict login to members of a certain group. We do this
by using a custom search filter that matches users who belong to the group only.

The default search filter is:

(|(sAMAccountName=%s)(mail=%s))

When this filter is used, the placeholder %s is replaced by the user name entered in the login
form. The two terms (sAMAccountName=...) and (mail=...) then search for users
with a matching logon name or email address. The outer vertical pipe (|...) is LDAP
syntax for “or”, meaning we accept matches on either logon name or email address. In
order to modify this to match only users belonging to a group, we must first find the group
DN.

For the following group:

12 Chapter 2. Installation

Arigi Handbook, Release 1.1

We can deduce the DN by the domain name and “Users” container to be CN=Arigi
Users,CN=Users,DC=ad,DC=kastelo,DC=net. We can also use the command line tool
dsquery to find the same information:

Whichever method we use, we can now add it to the search filter. We need to take the
existing, default, search filter and combine it with a memberOf search on the group name
using an “and” criteria. By itself, that looks like:

(&(memberOf=CN=Arigi Users,CN=Users,DC=ad,DC=kastelo,DC=net)...)

where the “. . . ” part is the original search pattern. The total search query option that we use
then becomes:

--ldap-search-pattern
"(&(memberOf=CN=Arigi Users,CN=Users,DC=ad,DC=kastelo,DC=net)

(continues on next page)

2.6. LDAP Authentication 13

Arigi Handbook, Release 1.1

(continued from previous page)

(|(sAMAccountName=%s)(mail=%s)))"

(Line breaks for clarity only.)

14 Chapter 2. Installation

CHAPTER

THREE

DASHBOARD

3.1 Overview

The Dashboard is the initial view or front page of Arigi. It shows a summary of the following
items:

• Number of devices per tag with online, offline, in sync, syncing, errored, with config
up to date, or with config pending update status.

• Number of devices per folder with online, offline, in sync, syncing, or errored status.

• Devices that are experiencing an error or that are offline due to being unreachable by
Arigi, with the corresponding error.

• Each view can be filtered by tags, folder ID or folder label. Folder labels can be edited
directly in the folder list by clicking on the corresponding label / ID.

15

Arigi Handbook, Release 1.1

3.2 Summary Indicators

At the top of the dashboard there are several graphical indicators that give a quick overview
of the current status of all devices.

On the left is the device connection status graph. It indicates the fraction of configured
devices that are currently online and reachable by Arigi. In the example, one device out
of three is unreachable, resulting in one third of the indicator being red. The colors in the
connection status graph are green for online devices, and red for offline devices.

In the middle is the device sync status graph. It indicates the sync status of the configured
devices. The colors in this graph are green for online devices that are in sync, blue for online
devices that are syncing, yellow for online devices that are experiencing a sync error, and
greyfor offline devices (unknown sync status).

To the right is the device configuration sync status graph. It indicates the configuration sync
status of the configured devices. The colors in this graph are green for online devices where
the configuration is in sync, yellow for online devices that are pending an update to the
configuration, and grey for offline devices (unknown configuration sync status).

3.3 Devices Table

The table below the indicators contain the same information in a more detailed manner,
broken down per tag. Please note that a given device may be accounted under more than
one tag. The coloring in the table is green for positive values (online, in sync), red for values
indicating a problem (offline devices), yellow for values indicating a possible but less serious
problem (sync error, configuration pending). Note that devices that are not online do not
have a determined sync or configuration status and are thus not accounted in those sections.

16 Chapter 3. Dashboard

CHAPTER

FOUR

DEVICES

4.1 Overview

The Device tab used to enroll (add) and edit devices. For Arigi to be able to manage a device
it must know:

• The device ID (Actions > Show ID in Syncthing)

• The device address, which may be an IP address, a domain name, or blank to use the
standard Syncthing global discovery infrastructure.

• The device API port. This is the GUI/API listen port in Syncthing and defaults to 8384.

• The API key (also shown in Action > Settings) in Syncthing.

17

Arigi Handbook, Release 1.1

Each device can have a label. The label is strictly for display purposes and doesn’t affect the
Arigi functionality.

Once a device is saved you can add tags to describe it and link it to templates.

When opening an existing device, the device tab includes some extra information picked up
from the device: its version, CPU utilization, etc.

4.2 Automatic Enrollment

TBD

4.3 Reverse Tunneling the API

The usual flow of API access is for Arigi to make the API connection to the Syncthing device.
This uses the configured API port and a configured or discovered IP address.

18 Chapter 4. Devices

Arigi Handbook, Release 1.1

Syncthing

Arigi

There are cases where this is not practical, such as when the device is behind a firewall and
not reachable from Arigi. In this case a reverse HTTP tunnel can be employed. This uses
the tunnel server arigitunnelsrv which makes outgoing connections towards both Arigi
and the Syncthing API.

Syncthing

arigitunnelsrv

Arigi

If the tunnel server is placed close to the device, the result is similar to inverting the connec-
tion flow: the connection comes to Arigi instead of originating at Arigi.

To accomplish this, the tunnel server needs to be started and pointed towards both the Sync-
thing device to be forwarded and Arigi itself:

$ arigitunnelsrv --syncthing-device=GITWQ7Q-...-DDVVCAO \
--syncthing-addr="192.0.2.42:8384" \
--arigi-addr="arigi.example.com:80"

In addition, Arigi should be configured to expect an incoming tunnel connection:

4.3. Reverse Tunneling the API 19

Arigi Handbook, Release 1.1

When checking the “Use reverse HTTP tunnel” checkbox the host and port fields are dis-
abled as they become irrelevant. Further configuration, such as API key, is still available and
works in the same way as usual. In particular, the tunnel server has no part in the authen-
tication of the API connection, necessitating Arigi to use the API key as usual. API connec-
tions through the tunnel server are end-to-end encrypted between Arigi and the Syncthing
device.

20 Chapter 4. Devices

CHAPTER

FIVE

CONFIGURATION TEMPLATING

5.1 Overview

Templating is the mechanism by which we configure devices in Arigi. A device has one or
more tags attached to it. These tags in turn match one or more configuration fragments that
have the same tags. Arigi evaluates these fragments, assembles them in the order dictated
by their priority, and thus creates a complete device configuration. If this configuration dif-
fers from what the device in question currently has, Arigi updates the device configuration
accordingly. This is a powerful mechanism that allows reuse of configuration fragments be-
tween many devices, and automatically ensures that all affected devices are updated when
a fragment changes.

21

Arigi Handbook, Release 1.1

Current Config

Intermediate 1

Template A
prio=20

Template B
prio=30

Intermediate 2

New Config

Configuration fragments, in turn, can be dynamically built based on the information in
Arigi. For example, a single fragment might define a folder shared with all devices having
a certain tag. When a new device is added to this tag the fragment will change to accommo-
date it, and all devices attached to the fragment will be reconfigured to share the folder with
the new device.

5.2 Updating by JSON

For simple cases, such as updating a config option, the best way is to provide the template
in JSON format. For example, if we want to set the GUI port to 18384 instead of the default,
a template definition would look like this:

Operation Set

Key gui.address

Template ":18384"

Or, in the GUI:

22 Chapter 5. Configuration Templating

Arigi Handbook, Release 1.1

Note: The value :18384 is quoted, ":18384" because the template syntax is JSON and
this is a string type value.

The GUI editor also shows the interpretation of the template itself in JSON format, and the
resulting configuration after applying it to a device:

5.2. Updating by JSON 23

Arigi Handbook, Release 1.1

5.3 Updating by Python (Starlark)

5.3.1 Language Basics

Arigi templates can use the Starlark templating language which is very similar to Python1.
There are restrictions on the code in these templates – it is for example not possible to per-
form file I/O or launch external processes.

The configuration of the device being templated is available in the cfg variable and any
changes to this object will be persisted as the result of the template. Python templates do
therefore not have a “Key” setting like JSON templates. The ID of the current device is in
the myID variable.

In the simplest case a Python template can be used to set static values, similar to a JSON tem-
plate. For example, this template sets the GUI user ID and password hash to predetermined
values:

1 Similar enough that we’ll often use the terms “Python” and “Starlark” interchangeably, as Python is more
well known.

24 Chapter 5. Configuration Templating

https://github.com/bazelbuild/starlark/blob/master/spec.md

Arigi Handbook, Release 1.1

When developing Python templates it is sometimes useful to inspect values of variables.
The debug function will output information so that it’s visible in the template result. For
example:

Functions and standard Python control structures can also be used to inspect and modify
the configuration. One difference from standard Python is that loops and conditionals are
only permitted inside functions.

5.3. Updating by Python (Starlark) 25

Arigi Handbook, Release 1.1

5.3.2 Database Access

To perform more advanced configuration templating we often need information about other
devices than ourselves. For this purpose we have access to the db object, representing a
read-only view of the Arigi database.

This allows to, for example, ensure that the default folder is shared will all devices. Here is
a more involved example in text form:

List all devices in the database.
all_devs = db.ListDevices()

Process them into a list of {"devicID": "..."} objects as expected in
↪→the configuration.
The string_dict() function forces the key to be of string type, which
↪→is required in the
Syncthing configuration but not enforced by default by Starlark.
device_ids = [string_dict({ "deviceID": dev.DeviceID }) for dev in all_
↪→devs]

All devices should share the folder.
(continues on next page)

26 Chapter 5. Configuration Templating

Arigi Handbook, Release 1.1

(continued from previous page)

Find the folder in the current list of folders.
default_folder = [f for f in cfg["folders"] if f["id"] == "default"][0]

Set the label and devices
default_folder["label"] = "Auto generated default folder"
default_folder["devices"] = device_ids

All devices should be added as peers.

This is myself. We take it from the existing config in order to
↪→preserve label and such.
my_dev = [d for d in cfg["devices"] if d["deviceID"] == myID]

This is everyone else.
other_devs = [d for d in device_ids if d["deviceID"] != myID]

Set the list of devices.
cfg["devices"] = my_dev + other_devs

The following methods are available on the database object:

GetDevice(id) Returns the device object for the given device ID.

GetDeviceConfig(id, stage) Returns the current device configuration for the
given device ID. Stage is one of polled (the latest config returned by the
device itself) or generated (the latest config we’ve generated due to tem-
plate evaluation, but not necessarily pushed to the device yet).

GetDeviceVersion(id) Returns the current device version object for the given
device ID.

ListDevices() Returns the list of all device objects.

ListDevicesWithTag(tag) Returns the list of all device objects having the given
tag.

ListDeviceTags(id) Returns the list of tags for the given device ID.

ListFolders() Returns the list of currently known folders.

ListTags() Returns the list of all tags.

Using the debug(...) and debug(dir(...)) functions on returned objects can be useful
in determining their structure and methods.

5.3. Updating by Python (Starlark) 27

Arigi Handbook, Release 1.1

28 Chapter 5. Configuration Templating

CHAPTER

SIX

THE CLI

The installation package (.tar.gz) includes a command line client called simply arigi. This
utility can be used to manage Arigi installation in most ways the graphical dashboard can.
For example, you can:

• Enroll new devices,

• List and inspect status for current devices,

• List and inspect status for synchronized folders,

• Add and modify device tags,

• Add and modify configuration fragments,

. . . and so on.

To see all available commands and options, please run arigi --long-help.

Examples:

$ arigi login http://localhost:2525 admin my-admin-password
$ arigi --long-help
$ arigi device add abcdef-123567-... apikeyapikey
$ arigi device list
$ arigi device get abcdef-123567-...
$ arigi device tag abcdef-123567-... mytag

29

Arigi Handbook, Release 1.1

30 Chapter 6. The CLI

CHAPTER

SEVEN

UPGRADING

7.1 Between Patch Versions

Versions with the same major and minor (first and second digit group) and that only differ
in the patch version (third digit group) are always compatible, both in terms of configura-
tion and database format. It is always possible to upgrade and downgrade between such
versions, for example from 1.0.1 to 1.0.2 and back.

7.2 From 1.0 to 1.1

Arigi version 1.1 introduces backwards incompatible multi user support, and removes sup-
port for PostgreSQL databases. The upgrade considerations differ based on your current
database usage.

7.2.1 With In Memory Database

No specific action is required to upgrade when using the in memory database
(--use-ram-db). It is recommended to take a backup of the existing database before up-
grading, in case a rollback or downgrade is required.

The --use-ram-db option is allowed but ignored as the in memory database is now the
only choice.

7.2.2 With PostgreSQL

Arigi version 1.1 uses only the in memory database. When upgrading it is necessary to
migrate existing data via a backup:

1. Shut down the existing Arigi 1.0 server.

2. Create a backup of the existing PostgreSQL database using your existing Arigi 1.0.1 or
higher 1.0 version:

$ arigisrv --backup-to=database.bk --postgres-...

When running with the --backup-to option, and your usual PostgreSQL configura-
tion options, Arigi will start up, create the named backup file, and then exit.

31

Arigi Handbook, Release 1.1

3. Restore this backup using the new Arigi 1.1 version:

$ arigisrv --restore-from=database.bk ...

When running with the --restore-from and your usual configuration options, ex-
cepting any PostgreSQL options, the database will be initialized and restored from the
given backup file. Arigi will then exit.

4. Run arigisrv in your usual manner, having removed any PostgreSQL options from
the command line or environment.

32 Chapter 7. Upgrading

	Introduction
	Functionality
	Principle of Operation
	Getting Help

	Installation
	Requirements
	Procedure
	Authentication & HTTPS
	Docker Image
	Configuring SMTP
	LDAP Authentication

	Dashboard
	Overview
	Summary Indicators
	Devices Table

	Devices
	Overview
	Automatic Enrollment
	Reverse Tunneling the API

	Configuration Templating
	Overview
	Updating by JSON
	Updating by Python (Starlark)

	The CLI
	Upgrading
	Between Patch Versions
	From 1.0 to 1.1

